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Final Report for “Bell Inequalities for Complex Networks”

Greg Ver Steeg

Abstract

This effort studied new methods to understand the effect of hidden variables af-
fecting complex systems. Bell inequalities are a famous example of a hidden variable
test in quantum physics that provides the strongest evidence for that theory. Initial
work in this project extended the mathematical formulations of Bell inequalities to
design new hidden variable tests that were able to account for confounding effects in
complex systems including human social networks. These tests solved an open ques-
tion about the identifiability of contagion in social network studies. Subsequent work
moved beyond identification of hidden variables to develop a new information-theoretic
framework capable of reconstructing hidden variables explaining the multivariate de-
pendencies in complex systems. These methods have demonstrated value on diverse
problems including human behavior, language, neuroscience, and gene expression.

1 Objectives

The original objectives of this project were the following:

• Objective 1: Develop statistical tests that identify which hidden processes give rise
to network dynamics.

• Objective 2: Analyze key models of dynamic processes in networks, e.g., to distinguish
whether influence or other hidden factors are responsible for correlations.

• Objective 3: Perform meta-analysis of studies that purport to identify influence in
social networks. E.g., the highly publicized result that obesity is contagious in [1]
has been criticized [2] and this method could be used to settle the controversy.

• Objective 4: Improve connection between probabilistic graphical models and alge-
braic geometry leading to more scalable methods.

These objectives were fulfilled in the work [3]. This led to a broadening of the scope of the
project to include not just the identification of hidden variables, but also reconstruction.
The following objectives became the central focus of the second phase of work.

• Objective 5: Deduce structural relationships resulting from common dependence on
hidden variables and reconstruct these hidden variables.
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• Objective 6: Generalize to arbitrary complex systems and provide theoretical guar-
antees to recover hidden variables.

2 Status of effort

This work successfully translated the implications of [4] to leverage ideas from algebraic
geometry to construct tests for hidden variables (“Bell inequalities”) that were applicable in
complex settings like human social networks. The work of Christakis and Fowler suggesting
that obesity could be contagious in social networks [1] inspired many papers copying their
methodology to support other dubious claims along with many statistical papers criticizing
the methodology. This controversy was summarized in [2], leaving an open question as to
whether contagion could actually be identified in social networks. Our work [3] settled
this open question by providing a constructive test that applied to the study of Christakis
and Fowler. We applied this test to the Christakis and Fowler’s original obesity study and
found that, indeed, various non-contagion confounding effects suggested by [2] and others
could be ruled out as the cause of strong correlations in obesity in social networks.

The second phase of this effort led to the development of information-theoretic methods
to reconstruct underlying hidden factors responsible for multivariate dependence in data.
This line of work [5, 6] has already been successfully applied in several domains including
neuroscience [7, 8], analyzing text [9, 10], and gene expression.

3 Accomplishments / New findings

3.1 Identifying hidden variables

Christakis and Fowler’s paper suggesting that obesity may spread along social ties [1] has
sparked years of discussion about what constitutes evidence of contagion in observational
social network studies (see, e.g., this recent review [?]). The most general result from
the causal modeling perspective shows that latent homophily acts as a confounder for
contagion so that uniquely pinpointing the strength of contagion is impossible without
additional assumptions [2]. In other words, contagion is non-parametrically unidentifiable.
However, if the true goal is to test for the presence of contagion, a lower bound on the
strength of contagion is all that is necessary. Our work presented exactly such bounds,
derived analogously to Bell inequalities but requiring more sophisticated mathematical
methods from algebraic geometry.

Previous tests for contagion in social network studies were vulnerable to the confounding
effects of latent homophily (i.e., ties form preferentially between individuals with similar
hidden traits). We demonstrated a general method to lower bound the strength of causal
effects in observational social network studies, even in the presence of arbitrary, unobserved
individual traits. Our tests require no parametric assumptions and each test is associated
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with an algebraic proof. We demonstrated the effectiveness of our approach by correctly
deducing the causal effects for examples previously shown to expose defects in existing
methodology. Finally, we applied our methods to the Framingham Heart Study showing
that various non-contagion confounding effects suggested by [2] and others could be ruled
out as the cause of strong correlations in obesity in social networks [3].

Our method is based on an algebraic geometric approach to deducing the most general
possible bounds compatible (or incompatible) with a given hidden variable model. It
produces a sequence of bounds on the strength of contagion which converge in some limit
to the best possible bounds. In this sense, our method is the best solution to the problem of
measuring the strength of contagion that does not involve invoking additional (parametric)
assumptions.

We also re-formulated the search for statistical tests as a linear program [3] instead of
an SDP[4], leading to the discovery of more powerful tests with less computation. This
re-formulation also allows for more flexibility in specifying the null (hidden variable) model.
We applied the new tests to FHS data to deduce, for example, that correlations in obesity
cannot be explained solely in terms of hidden variable models (without contagion), and
correlations in smoking exhibit a non-stationary behavior suggesting common external
cause as a necessary factor.

3.2 Recovering hidden variables

Without any prior knowledge, what can be automatically learned from high-dimensional
data? If the variables are uncorrelated then the system is not really high-dimensional
but should be viewed as a collection of unrelated univariate systems. If correlations exist,
however, then some common cause or causes must be responsible for generating them.
Without assuming any particular model for these hidden common causes, is it still possible
to reconstruct them? We propose an information-theoretic principle, which we refer to
as “correlation explanation”, that codifies this problem in a model-free, mathematically
principled way. Essentially, we are searching for latent factors so that, conditioned on these
factors, the correlations in the data are minimized (as measured by multivariate mutual
information). In other words, we look for the simplest explanation that accounts for the
most correlations in the data. As a bonus, building on this information-based foundation
leads naturally to an innovative paradigm for learning hierarchical representations that is
more tractable than Bayesian structure learning and provides richer insights than neural
network inspired approaches [?].

In initial work [5], we introduced a method to learn a hierarchy of successively more
abstract representations of complex data based on optimizing an information-theoretic
objective. Intuitively, the optimization searches for a set of latent factors that best ex-
plain the correlations in the data as measured by multivariate mutual information. The
method is unsupervised, requires no model assumptions, and scales linearly with the num-
ber of variables which makes it an attractive approach for very high dimensional systems.
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We demonstrated that Correlation Explanation (CorEx) automatically discovers meaning-
ful structure for data from diverse sources including personality tests, DNA, and human
language. In benchmarks, we showed that CorEx could recover synthetic latent tree mod-
els perfectly for problems orders of magnitude larger than standard techniques. Because
CorEx scales linearly, it also outperforms methods specially designed for latent tree prob-
lems which scale cubically or worse.

In subsequent work [6], we deepened these results by proving rigorous bounds on the
quality of the recovered latent factors. In particular, we consider a collection of random
variables that each depend only on a set of input variables as a representation of the
inputs. We presented bounds on how informative a representation is about some input
data and extended these bounds to hierarchical representations so that we can quantify
the contribution of each layer towards capturing the information in the original data. These
results indicated a bottom-up procedure which casts the search for maximally informative
hierarchical representations as an optimization problem. The complexity of the resulting
optimization is linear in the number of variables. Compared to the results in [5], these
results allow several generalizations. First of all, we no longer had to restrict ourselves to
latent tree models; arbitrary connectivity between observed variables and learned latent
factors is possible. Secondly, we showed in this work how to extend the results from discrete
data to continuous data.

One of the drawbacks of the standard deep learning paradigms that is shared by CorEx
is the need to specify the number of layers and hidden units in each layer ahead of time.
Ideally, we could organically grow a network of hidden units, adding new ones as long
as they provided an information advantage and then stopping. In [11], we introduced an
approach that does this that we called the information sieve. The sieve is based on a novel
hierarchical decomposition of information. Intuitively, data is passed through a series of
progressively fine-grained sieves. Each layer of the sieve recovers a single latent factor that is
maximally informative about multivariate dependence in the data. The data is transformed
after each pass so that the remaining unexplained information trickles down to the next
layer. Ultimately, we are left with a set of latent factors explaining all the dependence in the
original data and remainder information consisting of independent noise. We presented a
practical implementation of this framework for discrete variables. We showed that it could
be used for a variety of tasks including (discrete) independent component analysis, lossy
and lossless compression, and predicting missing values in data. For discrete independent
component analysis, in particular, the sieve appears as a state-of-the-art approach. The
best previous approach was exponential in the number of variables [?] while the sieve is
linear. Although the previous approach provides better theoretical guarantees, the sieve
will be more useful in many practical, high-dimensional situations.
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4 Personnel supported

This young investigator award was solely used to support a portion of the effort for the PI,
Greg Ver Steeg (Research Faculty).

5 Publications

The following publications were supported by this effort:

• Greg Ver Steeg and Aram Galstyan. Statistical tests for contagion in observational
social network studies. In Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2013.

• Greg Ver Steeg and Aram Galstyan. Discovering structure in high-dimensional data
through correlation explanation. In Advances in Neural Information Processing Sys-
tems (NIPS), 2014.

• Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representa-
tions of high-dimensional data. In Proceedings of the Sixteenth International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2015.

• Greg Ver Steeg and Aram Galstyan. The Information Sieve. arXiv:1507.02284, 2015.

Code that resulted from these publications is included in appendices.

6 Interactions/Transitions

I participated in the AFOSR Complex Networks program reviews and I also visited AFRL
Rome for a few days to discuss collaborative efforts and gave a talk for the “Distinguished
Speaker Seminar Series in Machine Intelligence and Autonomy” in 2014. Besides these
Air Force affiliated interactions, I disseminated results of this effort in standard academic
venues including presentations at AISTATS in 2013 and 2015 and NIPS in 2014. Other
presentations and invited talks include the following.

• Joint Symposium on Neural Computation at USC 2015

• Machine Learning LA at eHarmony 2015

• Information Theory and Applications Workshop 2015

• Santa Fe Institute, workshop on “Statistical Mechanics of Complexity” 2014

• IPAM Mathematics of Social Learning Workshop 2014

• ISI, Natural Language Seminar 2013

• ID Analytics, “Information-Theoretic Tools for Social Media” 2013

• Santa Fe Institute, workshop on “Structure, Statistical Inference and Dynamics in
Networks” 2013
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• Sante Fe Institute, “Information-Theoretic Tools for Social Media” 2012

• Keynote for “Making Sense of Microposts” workshop at WWW 2012. 2012

• SAP Research, Singapore 2012

• LARC, Singapore Management University seminar. 2012

• UC Irvine, AI-ML seminar. 2012

• Society of Biological Psychiatry, 2015.

• NIPS workshop on Machine Learning in Computational Biology (MLCB), 2014.

• NIPS workshop on Machine Learning and Interpretation in Neuroimaging (MLINI),
2014. Workshop on Information in Networks, 2013. AAAI-13 Workshop on Expand-
ing the Boundaries of Health Informatics Using AI (HIAI), 2013.

• Workshop on Information in Networks(WIN), 2012.

7 Inventions and patent disclosures

None.

8 Honors/Awards

None.

References

[1] Nicholas A. Christakis and James H. Fowler. The spread of obesity in a large social
network over 32 years. The New England Journal of Medicine, 357(4):370–379, July
2007.

[2] Cosma R. Shalizi and Andrew C. Thomas. Homophily and contagion are generically
confounded in observational social network studies. arxiv:1004.4704, 2010.

[3] Greg Ver Steeg and Aram Galstyan. Statistical tests for contagion in observational
social network studies. In Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2013.

[4] Greg Ver Steeg and Aram Galstyan. A sequence of relaxations constraining hidden
variable models. In Proc. of the Twenty-Seventh Conference on Uncertainty in Arti-
ficial Intelligence (UAI 2011), 2011.

[5] Greg Ver Steeg and Aram Galstyan. Discovering structure in high-dimensional data
through correlation explanation. In Advances in Neural Information Processing Sys-
tems (NIPS), 2014.

6



[6] Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representa-
tions of high-dimensional data. In Proceedings of the Sixteenth International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2015. http://arxiv.org/

abs/1410.7404.

[7] Sarah K. Madsen, Greg Ver Steeg, Adam Mezher, Neda Jahanshad, Talia M. Nir,
Xue Hua, Boris A. Gutman, Aram Galstyan, and Paul M. Thompson. Information-
theoretic characterization of blood panel predictors for brain atrophy and cognitive
decline in the elderly. IEEE International Symposium on Biomedical Imaging, 2015.

[8] Madelaine Daianu, Greg Ver Steeg, Adam Mezher, Neda Jahanshad, Talia M. Nir, Xi-
aoran Yan, Gautam Prasad, Kristina Lerman, Aram Galstyan, and Paul M. Thomp-
son. Information-theoretic clustering of neuroimaging metrics related to cognitive
decline in the elderly. In Proceedings of the MICCAI Workshop on Medical Computer
Vision, 2015.

[9] Nathan Hodas, Greg Ver Steeg, Joshua Harrison, Satish Chikkagoudar, Eric Bell, and
Courtney Corley. Disentangling the lexicons of disaster response in twitter. In The 3rd
International Workshop on Social Web for Disaster Management (SWDM’15), 2015.

[10] Peixian Chen, Nevin L Zhang, Leonard KM Poon, and Zhourong Chen. Progres-
sive em for latent tree models and hierarchical topic detection. arXiv preprint
arXiv:1508.00973, 2015.

[11] Greg Ver Steeg and Aram Galstyan. The information sieve. arXiv preprint
arXiv:1507.02284, 2015.

A Contagion code
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Statistical tests for contagion in 
observational social network studies
Greg Ver Steeg and Aram Galstyan
Information Sciences Institute, USC

This notebook contains code and examples for the paper of the associated title. 

Constructing tests

Definitions
These definitions are used in the rest of the notebook. Note that we always use lexical order for definin-
ing binary sequences. A,B=((0,0,0),(0,0,0)),((0,0,0),(0,0,1))... 

vec[j_,T_]:=IntegerDigits[j,2,T];
vecboth[j_,T_]:={vec[Quotient[j,2T],T],vec[Mod[j,2T],T]};
(*⋆Number of transitions of each type*⋆)
f00[a_]:=Sum[(1-−a[[i]])(1-−a[[i+1]]),{i,Length[a]-−1}];
f01[a_]:=Sum[(1-−a[[i]])(a[[i+1]]),{i,Length[a]-−1}];
f10[a_]:=Sum[(a[[i]])(1-−a[[i+1]]),{i,Length[a]-−1}];
f11[a_]:=Sum[(a[[i]])(a[[i+1]]),{i,Length[a]-−1}];
(*⋆For a non-−causal model*⋆)
pseq[a_,pfp_,pfm_,p0_]:= pfp^f01[a] pfm^f10[a] 1-−pfp^f00[a] 1-−pfm^f11[a] p0^a[[
(*⋆For a causal model*⋆)
pseqc[a_,b_,pfp_,pfm_,p0_,b0_,b00_,b01_,b10_,b11_]:= pseq[a,pfp,pfm,p0] b0^b[[1]] (1-−b0)^(
Which[
a[[i]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵1,b00,
a[[i]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b00,
a[[i]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵1,b01,
a[[i]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b01,
a[[i]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵1,b10,
a[[i]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b10,
a[[i]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵1,b11,
a[[i]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b11
],
{i,Length[b]-−1}];
(*⋆For an "instant" causal model*⋆)
pseqi[a_,b_,pfp_,pfm_,p0_,bp0_,bp1_,b00_,b01_,b10_,b11_]:= pseq[a,pfp,pfm,p0] Which[
a[[1]]⩵0,bp0^b[[1]] (1-−bp0)^(1-−b[[1]]),
a[[1]]⩵1,bp1^b[[1]] (1-−bp1)^(1-−b[[1]])
] Product[
Which[
a[[i+1]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵1,b00,
a[[i+1]]⩵0 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b00,
a[[i+1]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵1,b01,
a[[i+1]]⩵0 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b01,
a[[i+1]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵1,b10,
a[[i+1]]⩵1 && b[[i]]⩵0 && b[[i+1]]⩵0,1-−b10,

,b11,



a[[i+1]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵1,b11,
a[[i+1]]⩵1 && b[[i]]⩵1 && b[[i+1]]⩵0,1-−b11
],
{i,Length[b]-−1}];

(*⋆Influence model 1, "Instant" influence*⋆)
phat1[δ_,T_]:= Flatten[Table[2-−TProduct[δ Boole[vec[i,T][[t]]⩵vec[j,T][[t]]]+(1-−δ)/∕2,{t,1,
(*⋆Influence model 2, Delayed influence*⋆)
phat2[δ_,T_]:= Flatten[Table[2-−T-−1Product[δ Boole[vec[i,T][[t-−1]]⩵vec[j,T][[t]]]+(1-−δ)/∕2,{t

(*⋆Given M samples and <c>_obs, the confidence that <c>_real ≥ z = <c>_obs-−γ, ASSUMING c is
hoeffding[M_,z_]:=1-−Exp-−2 M (z/∕2)2;
norm[z_]:=z/∕Total[z];

id[j_,NN_]:=Table[Boole[i⩵j],{i,NN}];
(*⋆Convert counts to actual random vectors of which we have M samples*⋆)
rawdata[vector_,counts_]:=Flatten[
Table[
Table[vector.id[j,Length[counts]],{k,counts[[j]]}],
{j,Length[counts]}],
1];
(*⋆Confidence based on Binomial distribution. Return confidence level rather than p-−value*⋆)
testbinomial[vector_,counts_,greater_]:=1-−N[CDF[BinomialDistribution[Abs[vector].counts,1/∕

FHS data

(*⋆Counts of sequences for NR friends, also listed in paper*⋆)
obesity = {5, 2, 2, 0, 4, 3, 2, 2, 1, 3, 3, 3, 3, 1, 2, 4, 4, 1, 6, 1, 3, 4, 5, 3, 2, 0, 8, 0,

1, 4, 2, 1, 4, 7, 2, 2, 5, 3, 8, 2, 4, 2, 3, 4, 2, 3, 2, 1, 1, 1, 3, 1, 2, 2, 1, 3, 1,
5, 2, 6, 3, 6, 3, 3, 6, 2, 4, 3, 7, 9, 6, 6, 1, 0, 5, 4, 4, 4, 3, 1, 2, 3, 2, 1, 5, 4,
3, 5, 2, 7, 4, 1, 2, 3, 0, 1, 1, 2, 3, 6, 4, 5, 5, 4, 1, 7, 3, 1, 0, 6, 0, 0, 0, 0, 5,
2, 3, 2, 4, 2, 6, 1, 1, 1, 3, 2, 1, 3, 3, 3, 2, 3, 3, 2, 1, 2, 0, 2, 3, 6, 2, 5, 1, 0,
3, 1, 1, 3, 0, 7, 6, 1, 2, 0, 2, 2, 1, 6, 4, 0, 3, 8, 8, 5, 6, 3, 3, 6, 2, 7, 5, 3,
5, 3, 5, 2, 3, 2, 4, 5, 2, 2, 4, 2, 4, 3, 4, 5, 1, 2, 2, 3, 3, 1, 2, 3, 3, 0, 2, 5,
2, 1, 2, 1, 0, 1, 3, 0, 3, 3, 0, 1, 3, 4, 3, 2, 2, 6, 4, 2, 2, 11, 1, 2, 4, 2, 2, 3,
3, 1, 0, 2, 1, 3, 2, 0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 0, 1, 4, 0, 1, 5, 3, 0, 1, 1, 1};

ST Data
Here input data from simulations using Shalizi/Thomas models

2     contagion_code_final.nb



sthomophily = {106 344, 2067, 2304, 1048, 2159, 954, 1038, 1682, 2189, 1073, 1010,
1713, 1059, 1761, 1776, 41 313, 2330, 109, 89, 45, 96, 40, 53, 64, 73, 59, 45,
77, 61, 84, 80, 1890, 2507, 97, 108, 46, 92, 52, 53, 104, 97, 40, 64, 84, 59,
88, 108, 1967, 1194, 48, 48, 36, 52, 32, 25, 44, 40, 29, 23, 58, 29, 38, 46,
1238, 2415, 73, 108, 59, 102, 46, 55, 96, 109, 49, 46, 78, 41, 66, 85, 1918,
1076, 42, 46, 26, 52, 27, 37, 48, 46, 36, 32, 55, 25, 40, 38, 1156, 1083, 59,
43, 47, 48, 17, 29, 42, 68, 38, 23, 56, 28, 41, 44, 1192, 1961, 75, 80, 42, 78,
43, 39, 95, 87, 52, 46, 99, 46, 78, 103, 2405, 2359, 99, 103, 53, 83, 45, 55,
89, 91, 52, 48, 73, 57, 77, 75, 1985, 1207, 52, 42, 24, 32, 25, 34, 46, 56, 31,
32, 50, 21, 49, 49, 1264, 1199, 42, 39, 27, 43, 27, 27, 53, 44, 30, 23, 62, 27,
47, 51, 1175, 1926, 88, 94, 56, 72, 55, 46, 114, 77, 55, 49, 107, 48, 91, 94,
2417, 1256, 48, 52, 30, 51, 25, 29, 42, 46, 28, 20, 48, 26, 36, 51, 1182, 1926,
80, 86, 45, 69, 43, 41, 86, 60, 51, 34, 99, 45, 93, 84, 2419, 1906, 95, 83, 47,
79, 53, 58, 92, 73, 54, 41, 109, 50, 108, 98, 2457, 41 840, 1734, 1777, 1014,
1765, 1028, 996, 2170, 1704, 1125, 1075, 2192, 1095, 2120, 2115, 106 407};

stinfluence = {17 999, 2339, 2289, 1241, 3224, 1127, 1217, 950, 13 987, 2241, 2251,
1115, 3235, 1146, 1266, 1197, 2350, 2009, 489, 1026, 510, 839, 252, 853, 1671,
1811, 466, 1041, 479, 762, 257, 1254, 2262, 477, 1479, 849, 610, 275, 850, 774,
1655, 461, 1431, 872, 564, 262, 828, 1117, 1189, 1054, 896, 2840, 279, 568, 525,
2527, 834, 1040, 867, 2669, 316, 574, 547, 3302, 3243, 488, 587, 269, 2674, 773,
1007, 809, 2604, 508, 576, 293, 2892, 769, 1019, 1180, 1161, 869, 260, 543,
801, 1452, 432, 1550, 792, 813, 253, 557, 830, 1439, 478, 2361, 1146, 248, 854,
559, 1003, 449, 1929, 1633, 860, 242, 867, 518, 1100, 453, 1872, 2392, 992,
887, 767, 2509, 734, 1560, 1536, 10 086, 667, 843, 761, 2546, 832, 1689, 1640,
13 999, 13 947, 1682, 1655, 795, 2551, 723, 903, 688, 9829, 1602, 1525, 759,
2579, 740, 930, 928, 2222, 1862, 489, 1060, 499, 859, 266, 851, 1565, 1766, 488,
982, 529, 817, 267, 1241, 2192, 449, 1530, 823, 538, 236, 809, 761, 1539, 439,
1394, 788, 576, 238, 843, 1130, 1121, 1012, 786, 2671, 276, 537, 538, 2446, 748,
973, 767, 2478, 274, 536, 482, 3150, 3317, 503, 540, 270, 2775, 812, 1077, 803,
2580, 515, 579, 262, 3064, 800, 1136, 1242, 1039, 788, 230, 625, 798, 1498, 454,
1634, 683, 840, 230, 540, 870, 1489, 472, 2375, 1237, 261, 891, 502, 1080, 454,
1985, 1709, 829, 276, 782, 512, 1179, 478, 2075, 2354, 1280, 1231, 1095, 3342,
1173, 2179, 2456, 13 982, 946, 1196, 1186, 3095, 1216, 2325, 2473, 18 561};

The Basic Optimization Problem
Given some distribution, p!, we want to define an optimization problem that returns c (A, B), γ𝛾 so that 
〈c(A, B)〉p! -− 〈c(A, B)〉nc ≥ γ𝛾 for all non-causal models,nc, and γ𝛾 is maximized. Eq. 1.7 in the paper.

LP1[phat_, T_: 3, setmaxd_: -− 1, method_: "InteriorPoint"] :=
Module[{a0, b0, ap, am, bp, bm, c, γ, λ},

maxd = If[setmaxd < 0, 2 T, setmaxd];
vars = {a0, b0, ap, am, bp, bm};
(*⋆An arbitrary operator to take exp. value of*⋆)
cs = Flatten[Table[c[{i, j}], {i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}]];
(*⋆The quantity we ensure is non-−negative*⋆)
exp = -−γ + cs.phat -− Sum[c[{i, j}] pseq[vec[i, T], ap, am, a0]

pseq[vec[j, T], bp, bm, b0], {i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}];

(*⋆Monomials in the Handelman representation*⋆)
gs = {a0, b0, 1 -− a0, 1 -− b0, ap, am, bp, bm, 1 -− ap, 1 -− am, 1 -− bp, 1 -− bm};
(*⋆Powers to use in the Handelman representation*⋆)
powers = Flatten[Table[{i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12},

{i1, 0, maxd},
,
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{i2, 0, maxd -− i1},
{i3, 0, maxd -− i1 -− i2},
{i4, 0, maxd -− i1 -− i2 -− i3},
{i5, 0, maxd -− i1 -− i2 -− i3 -− i4},
{i6, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5},
{i7, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6},
{i8, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7},
{i9, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8},
{i10, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8 -− i9},
{i11, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8 -− i9 -− i10},
{i12, 0, maxd -− i1 -− i2 -− i3 -− i4 -− i5 -− i6 -− i7 -− i8 -− i9 -− i10 -− i11}], 11];

powers = Select[powers, Total[#[[1 ;; 4]]] ≤ 2 &];
(*⋆For a0,1-−a0,b0,1-−b0, only squared powers*⋆)
powers = Select[powers, Total[#] ≥ 2 T || Total[#] ≤ 1 &];
(*⋆It seems this doesn't affect bounds*⋆)

lambdas = Map[λ[#] &, powers]; (*⋆coefficients in H. Rep.*⋆)
handelman = FromCoefficientRules[Map[# → λ[#] &, powers], gs];
(*⋆The polynomial*⋆)
equalities = Select[Flatten[CoefficientList[exp -− handelman, vars]],

! MatchQ[#, 0] &];
(*⋆Equate poly monomials*⋆)

infostring = "Number of terms in handelman rep, : " <>
ToString[Length[lambdas]] <> ", for maxd: " <> ToString[maxd] <>
", should be <= : " <> ToString[Binomial[maxd + 12, maxd]] <>
" Total var in LP: " <> ToString[Length[lambdas] + Length[cs] + 1] <>
" Total number of constraints from equating terms of polys: " <>
ToString[Length[equalities]];

temp = PrintTemporary[infostring];

(*⋆Convert representation of
constraints for LinearProgramming call into m.x=b*⋆)

res = CoefficientArrays[equalities, Join[{γ}, lambdas, cs]];
m = res[[2]];
b = Map[{#, 0} &, -−res[[1]]];
maxgamma = Join[{-−1}, Table[0, {i, Length[lambdas] + Length[cs]}]];
(*⋆{Lower,Upper bounds} on variables*⋆)
constraints = Join[Table[{0, Infinity}, {i, Length[lambdas] + 1}],

Table[{-−1, 1}, {i, Length[cs]}]];

(*⋆Use method "RevisedSimplex" for numerically exact (but slower) answers*⋆)
sol = LinearProgramming[maxgamma, m, b, constraints, Method → method];

NotebookDelete[temp];
(*⋆Return γ,c.phat-−γ,c,λ*⋆)
If[Length[sol] ⩵ Length[lambdas] + Length[cs] + 1, {sol[[1]],

sol[[2 + Length[lambdas] ;;]].phat -− sol[[1]], sol[[2 + Length[lambdas] ;;]],
sol[[2 ;; Length[lambdas] + 1]]}, Print["Could not find a bound"];

0]
]

Defining the equalities
Here we define the set of equality constraints that must be satisfied.
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Here we define the set of equality constraints that must be satisfied.

equal[vectorpoly_, vars_] :=
Module[{c, NN = Length[vectorpoly]},

exp = Sum[c[i] vectorpoly[[i]], {i, NN}];
equalities = Select[Flatten[CoefficientList[exp, vars]], ! MatchQ[#, 0] &];
(*⋆Equate poly monomials*⋆)
NullSpace[CoefficientArrays[equalities, Table[c[i], {i, NN}]][[2]]]

]

Print["Equalities satisfied by non-−causal models"]
vars = {a0, b0, ap, am, bp, bm};
T = 4;
matrixeq4 =

equal[Flatten[Table[pseq[vec[i, T], ap, am, a0] pseq[vec[j, T], bp, bm, b0],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], vars];

Print["For T=", T, " there are ", Dimensions[matrixeq4][[1]],
" linearly independent constraints"]

T = 5;
matrixeq5 =

equal[Flatten[Table[pseq[vec[i, T], ap, am, a0] pseq[vec[j, T], bp, bm, b0],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], vars];

Print["For T=", T, " there are ", Dimensions[matrixeq5][[1]],
" linearly independent constraints"]

Print["For causal models"]
varsc = {ap, am, a0, b0, b00, b01, b10, b11};
T = 4;
matrixeq4c =

equal[Flatten[Table[pseqc[vec[i, T], vec[j, T], ap, am, a0, b0, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsc];

Print["For T=", T, " there are ", Dimensions[matrixeq4c][[1]],
" linearly independent constraints"]

T = 5;
matrixeq5c =

equal[Flatten[Table[pseqc[vec[i, T], vec[j, T], ap, am, a0, b0, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsc];

Print["For T=", T, " there are ", Dimensions[matrixeq5c][[1]],
" linearly independent constraints"]

Print["For 'instant' causal models"]
varsi = {ap, am, a0, bp0, bp1, b00, b01, b10, b11};
T = 4;
matrixeq4i = equal[

Flatten[Table[pseqi[vec[i, T], vec[j, T], ap, am, a0, bp0, bp1, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsi];

Print["For T=", T, " there are ", Dimensions[matrixeq4i][[1]],
" linearly independent constraints"]

T = 5;
matrixeq5i = equal[

Flatten[Table[pseqi[vec[i, T], vec[j, T], ap, am, a0, bp0, bp1, b00, b01, b10, b11],
{i, 0, 2^T -− 1}, {j, 0, 2^T -− 1}], 1], varsi];

Print["For T=", T, " there are ", Dimensions[matrixeq5i][[1]],
" linearly independent constraints"]
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Equalities satisfied by non-−causal models

For T=4 there are 60 linearly independent constraints

For T=5 there are 540 linearly independent constraints

For causal models

For T=4 there are 28 linearly independent constraints

For T=5 there are 316 linearly independent constraints

For 'instant' causal models

For T=4 there are 24 linearly independent constraints

For T=5 there are 296 linearly independent constraints

Useful equality constraints
Test1 corresponds to c2 in the paper. Test2 corresponds to c1.

(*⋆Using "RevisedSimplex" leads to exact results for the LP, but is slower*⋆)
{γ, bound, test1, lambdas} = LP1[phat2[0.1, 4], 4, 0, "RevisedSimplex"];
test1 = Round[test1, 1 /∕ 24]
{γ, bound, test2, lambdas} = LP1[phat1[0.1, 4], 4, 0];
test2 = Round[test2, 1]

ptest = Flatten[Table[pseq[vec[i, 4], ap, am, a0] pseq[vec[j, 4], bp, bm, b0],
{i, 0, 2^4 -− 1}, {j, 0, 2^4 -− 1}], 1];

(*⋆Verifies equality is satisfied algebraically*⋆)
Print["Check equality test1: ", FullSimplify[test1.ptest]];
Print["Check equality test2: ", FullSimplify[test2.ptest]];
Plot[test1.phat2[δ, 4], {δ, 0, 1}]
Plot[test2.phat1[δ, 4], {δ, 0, 1}]
FullSimplify[test1.phat1[δ, 4]]
FullSimplify[test1.phat2[δ, 4]]
FullSimplify[test2.phat1[δ, 4]]
FullSimplify[test2.phat2[δ, 4]]

{0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0,
1, 0, -−1, 0, 0, -−1, 1, -−1, -−1, 1, 1, -−1, -−1, 1, 1, -−1, 1, -−1, 1, -−1, -−1, 0, 0,
-−1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 1, -−1, 1, 1, -−1, -−1, 1, 1, -−1, -−1, 1,
-−1, 1, -−1, 1, 1, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 1, 0, -−1,
0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0,
0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0,
-−1, 0, 1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 1, 1, -−1, 1, 1,
1, -−1, 1, -−1, 1, -−1, 1, 1, 1, -−1, 1, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0, -−1,
0, 0, -−1, -−1, 1, -−1, -−1, -−1, 1, -−1, 1, -−1, 1, -−1, -−1, -−1, 1, -−1, 0, 0, 1, 0, -−1,
0, 0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0}
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{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0,
1, 0, -−1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, -−1, 0, 1, 0,
0, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -−1, 0, 0, 0, 0, 0, 0, 1, 0,
-−1, 0, 0, 0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, 1, 1, -−1, -−1, 0, 0, 0, 0, -−1, 0, 1, 0, 0, 0,
0, 0, 0, -−1, 0, 1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, -−1, -−1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Check equality test1: 0

Check equality test2: 0
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Analyzing data
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Analyzing data

Results of equality tests for Obesity

test2.norm[obesity]
testbinomial[test2, obesity, 0]
test1.norm[obesity]
testbinomial[test1, obesity, 0]

13

235

0.998231

-−
6

235

0.156967
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How big are errors from empirical distribution estimation?

(*⋆Draw empirical distributions from a completely mixed distribution*⋆)
Needs["ErrorBarPlots`"]
random[M_] := BinCounts[RandomInteger[255, M], {0, 256, 1}]
stats[M_, x_] := {{M, Mean[x]}, ErrorBar[StandardDeviation[x]]}
ms = Table[k, {k, 0, 10}];
test = Table[ Join[stats[k,

Table[Norm[norm[random[500 *⋆ 2^k]] -− Table[1 /∕ 256, {256}]], {i, 10}]]], {k, ms}];

ErrorListPlottest, Joined → True, Frame → True,
FrameTicks → {{Automatic, Automatic}, {ms, None}},
FrameLabel → Style"k (M = 500⨯2k samples)", 12, FontFamily → "Arial",

Style["Euclidean Distance", 12, FontFamily → "Arial"]

ShowPlot1  500 × 2^k , {k, 0, 10}, %
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plot2 = Graphics[{FontSize → 14,
FontFamily → "Helvetica", Text["γcopy/∕|ccopy|", {445 000, 0.009}]}];

plot3 = Graphics[{FontSize → 14, FontFamily → "Helvetica",
Text["γLH/∕|cLH|", {400 000, 0.0009}]}];

plot4 = Graphics[{FontSize → 14, FontFamily → "Helvetica",
Text["euc(M)", {180 000, 0.0035}]}];

plot6 = Plot1  M , {M, 0, 600 000}, PlotRange → {{0, 600 000}, {0, 0.01}},

Frame → True, FrameLabel → {Style["M samples", 12, FontFamily → "Arial"],
Style["Euclidean Distance", 12, FontFamily → "Arial"]}

plot5 = Show[plot6, ListPlot[{{{400 000, 0.00022}}, {{400 000, 0.0095}}},
PlotMarkers → Automatic], plot2, plot3]
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Export["deviation.pdf", plot5]

deviation.pdf
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Check max violation for FHS data with T=4,maxd=8

(*⋆For each attribute, link,
calc the violation. Then check confidence that the violation is greater than...

for no link*⋆)
{γ, bound, c, lambdas} = LP1[norm[obesity], 4, 8];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[obesity]]

γ=0.210877 γ/∕|c|=0.0174146 using M=705

Analyze ST Data with both types of test

{γ, bound, c, lambdas} = LP1[norm[stinfluence], 4, 9];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[stinfluence]]

γ=0.115694 γ/∕|c|=0.00956559 using M=400 000

{γ, bound, c, lambdas} = LP1[norm[sthomophily], 4, 9];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[sthomophily]]

Could not find a bound

{γ, bound, c, lambdas} = LP1[norm[sthomophily], 4, 0];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[sthomophily]]

γ=0.0023775 γ/∕|c|=0.000226686 using M=400 000

{γ, bound, c, lambdas} = LP1[norm[sthomophily], 4, 8, "RevisedSimplex"];
Print["γ=", γ, " γ/∕|c|=", γ /∕ Norm[c], " using M=", Total[sthomophily]]

$Aborted

γ=0.0023775 γ/∕|c|=0.000226686 using M=400 000

Print["Influence, copying model in ST"]
test1.norm[stinfluence] (*⋆deviation*⋆)
test1.stinfluence (*⋆heads+tails*⋆)
Abs[test1].stinfluence (*⋆heads -− tails*⋆)
testbinomial[test1, stinfluence, 0] (*⋆confidence using binomial dist*⋆)

test2.norm[stinfluence]
test2.stinfluence
Abs[test2].stinfluence
1 -− testbinomial[test2, stinfluence, 0]

Print["Latent homophily model in ST"]
test1.norm[sthomophily]
test1.sthomophily
Abs[test1].sthomophily
testbinomial[test1, sthomophily, 0]

test2.norm[sthomophily]
test2.sthomophily
Abs[test2].sthomophily
testbinomial[test2, sthomophily, 0]
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Influence, copying model in ST

-−
387

50 000
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1.633876631902287 × 10-−3181

Latent homophily model in ST
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B Code for Correlation Explanation (CorEx)

This code resulted from [5] and is maintained at http://www.github.com/gregversteeg/
corex.

"""Correlation Explanation

Greg Ver Steeg and Aram Galstyan. "Discovering Structure in

High-Dimensional Data Through Correlation Explanation."

NIPS, 2014. arXiv preprint arXiv:1406.1222.

Code below written by:

Greg Ver Steeg (gregv@isi.edu)

and Gabriel Pereyra

License: GPL2

"""

import numpy as np # Tested with 1.8.0

from scipy.misc import logsumexp # Tested with 0.13.0

class Corex(object):

"""

Correlation Explanation

A method to learn a hierarchy of successively more abstract

representations of complex data that are maximally

informative about the data. This method is unsupervised,

requires no assumptions about the data-generating model,

and scales linearly with the number of variables.

Greg Ver Steeg and Aram Galstyan. "Discovering Structure in

High-Dimensional Data Through Correlation Explanation."

NIPS, 2014. arXiv preprint arXiv:1406.1222.

Code follows sklearn naming/style (e.g. fit(X) to train)

Parameters

----------

n_hidden : int, optional, default=2

Number of hidden units.

dim_hidden : int, optional, default=2

Each hidden unit can take dim_hidden discrete values.

alpha_hyper : tuple, optional
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A tuple of three numbers representing hyper-parameters

of the algorithm. See NIPS paper for meaning.

Not extensively tested, but problem-specific tuning

does not seem necessary.

max_iter : int, optional

Maximum number of iterations before ending.

batch_size : int, optional

Number of examples per minibatch. NOT IMPLEMENTED IN THIS VERSION.

n_repeat : int, optional

Repeat several times and take solution with highest TC.

NOT IMPLEMENTED IN THIS VERSION. (But a good thing to do.)

verbose : int, optional

The verbosity level. The default, zero, means silent mode. 1 outputs TC(X;

Y) as you go

2 output alpha matrix and MIs as you go.

seed : integer or numpy.RandomState, optional

A random number generator instance to define the state of the

random permutations generator. If an integer is given, it fixes the

seed. Defaults to the global numpy random number generator.

Attributes

----------

labels : array, [n_hidden, n_samples]

Label for each hidden unit for each sample.

clusters : array, [n_variables]

Cluster label for each input variable.

p_y_given_x : array, [n_hidden, n_samples, dim_hidden]

The distribution of latent factors for each sample.

alpha : array-like, shape (n_components,)

Adjacency matrix between input variables and hidden units. In range [0,1].

mis : array, [n_hidden, n_variables]

Mutual information between each variable and hidden unit

tcs : array, [n_hidden]

TC(X_Gj;Y_j) for each hidden unit

tc : float
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Convenience variable = Sum_j tcs[j]

tc_history : array

Shows value of TC over the course of learning. Hopefully, it is converging

.

References

----------

[1] Greg Ver Steeg and Aram Galstyan. "Discovering Structure in

High-Dimensional Data Through Correlation Explanation."

NIPS, 2014. arXiv preprint arXiv:1406.1222.

"""

def __init__(self, n_hidden=2, dim_hidden=2, # Size of representations

batch_size=1e6, max_iter=400, n_repeat=1, # Computational limits

eps=1e-6, alpha_hyper=(0.3, 1., 500.), balance=0., # Parameters

missing_values=-1, seed=None, verbose=False):

self.dim_hidden = dim_hidden # Each hidden factor can take dim_hidden

discrete values

self.n_hidden = n_hidden # Number of hidden factors to use (Y_1,...Y_m) in

paper

self.missing_values = missing_values # Implies the value for this variable

for this sample is unknown

self.max_iter = max_iter # Maximum number of updates to run, regardless of

convergence

self.batch_size = batch_size # TODO: re-implement running with mini-

batches

self.n_repeat = n_repeat # TODO: Run multiple times and take solution with

largest TC

self.eps = eps # Change in TC to signal convergence

self.lam, self.tmin, self.ttc = alpha_hyper # Hyper-parameters for

updating alpha

self.balance = balance # 0 implies no balance constraint. Values between 0

and 1 are valid.

np.random.seed(seed) # Set for deterministic results

self.verbose = verbose

if verbose > 0:
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np.set_printoptions(precision=3, suppress=True, linewidth=200)

print ’corex, rep size:’, n_hidden, dim_hidden

if verbose > 1:

np.seterr(all=’warn’)

else:

np.seterr(all=’ignore’)

def label(self, p_y_given_x):

"""Maximum likelihood labels for some distribution over y’s"""

return np.argmax(p_y_given_x, axis=2).T

@property

def labels(self):

"""Maximum likelihood labels for training data. Can access with self.

labels (no parens needed)"""

return self.label(self.p_y_given_x)

@property

def clusters(self):

"""Return cluster labels for variables"""

return np.argmax(self.alpha[:,:,0],axis=0)

@property

def tc(self):

"""The total correlation explained by all the Y’s.

(Currently correct only for trees, modify for non-trees later.)"""

return np.sum(self.tcs)

def event_from_sample(self, x):

"""Transform data into event format.

For each variable, for each possible value of dim_visible it could take (

an event),

we return a boolean matrix of True/False if this event occurred in this

sample, x.

Parameters:

x: {array-like}, shape = [n_visible]

Returns:

x_event: {array-like}, shape = [n_visible * self.dim_visible]

"""

x = np.asarray(x)

n_visible = x.shape[0]

assert self.n_visible == n_visible, \

"Incorrect dimensionality for samples to transform."

return np.ravel(x[:, np.newaxis] == np.tile(np.arange(self.dim_visible), (

n_visible, 1)))
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def events_from_samples(self, X):

"""Transform data into event format. See event_from_sample docstring."""

n_samples, n_visible = X.shape

events_to_transform = np.empty((self.n_events, n_samples), dtype=bool)

for l, x in enumerate(X):

events_to_transform[:, l] = self.event_from_sample(x)

return events_to_transform

def transform(self, X, details=False):

"""

Label hidden factors for (possibly previously unseen) samples of data.

Parameters: samples of data, X, shape = [n_samples, n_visible]

Returns: , shape = [n_samples, n_hidden]

"""

if X.ndim < 2:

X = X[np.newaxis, :]

events_to_transform = self.events_from_samples(X)

p_y_given_x, log_z = self.calculate_latent(events_to_transform)

if details:

return p_y_given_x, log_z

else:

return self.label(p_y_given_x)

def fit(self, X, **params):

"""Fit CorEx on the data X.

Parameters

----------

X: {array-like, sparse matrix}, shape = [n_samples, n_visible]

Data matrix to be

Returns

-------

self

"""

self.fit_transform(X)

return self

def fit_transform(self, X):

"""Fit corex on the data (this used to be ucorex)

Parameters

----------

X : array-like, shape = [n_samples, n_visible]

The data.

24



Returns

-------

Y: array-like, shape = [n_samples, n_hidden]

Learned values for each latent factor for each sample.

Y’s are sorted so that Y_1 explains most correlation, etc.

"""

self.initialize_parameters(X)

X_event = self.events_from_samples(X) # Work with transformed

representation of data for efficiency

self.p_x, self.entropy_x = self.data_statistics(X_event)

for nloop in range(self.max_iter):

self.update_marginals(X_event, self.p_y_given_x) # Eq. 8

if self.n_hidden > 1: # Structure learning step

self.mis = self.calculate_mis(self.log_p_y, self.log_marg)

self.update_alpha(self.mis, self.tcs) # Eq. 9

self.p_y_given_x, self.log_z = self.calculate_latent(X_event) # Eq. 7

self.update_tc(self.log_z) # Calculate TC and record history for

convergence

self.print_verbose()

if self.convergence(): break

self.sort_and_output()

return self.labels

def initialize_parameters(self, X):

"""Set up starting state

Parameters

----------

X : array-like, shape = [n_samples, n_visible]

The data.

"""
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self.n_samples, self.n_visible = X.shape

self.initialize_events(X)

self.initialize_representation()

def initialize_events(self, X):

values_in_data = set(np.unique(X).tolist())-set([self.missing_values])

self.dim_visible = int(max(values_in_data)) + 1

if not set(range(self.dim_visible)) == values_in_data:

print "Warning: Data matrix values should be consecutive integers

starting with 0,1,..."

self.n_events = self.n_visible * self.dim_visible

def initialize_representation(self):

if self.n_hidden > 1:

self.alpha = (0.5+0.5*np.random.random((self.n_hidden, self.n_visible,

1)))

else:

self.alpha = np.ones((self.n_hidden, self.n_visible, 1), dtype=float)

self.tc_history = []

self.tcs = np.zeros(self.n_hidden)

log_p_y_given_x_unnorm = -np.log(self.dim_hidden) * (0.5 + np.random.

random((self.n_hidden, self.n_samples, self.dim_hidden)))

#log_p_y_given_x_unnorm = -100.*np.random.randint(0,2,(self.n_hidden, self

.n_samples, self.dim_hidden))

self.p_y_given_x, self.log_z = self.normalize_latent(

log_p_y_given_x_unnorm)

def data_statistics(self, X_event):

p_x = np.sum(X_event, axis=1).astype(float)

p_x = p_x.reshape((self.n_visible, self.dim_visible))

p_x /= np.sum(p_x, axis=1, keepdims=True) # With missing values, each x_i

may not appear n_samples times

entropy_x = np.sum(np.where(p_x>0., -p_x * np.log(p_x), 0), axis=1)

entropy_x = np.where(entropy_x > 0, entropy_x, 1e-10)

return p_x, entropy_x

def update_marginals(self, X_event, p_y_given_x):

self.log_p_y = self.calculate_p_y(p_y_given_x)

self.log_marg = self.calculate_p_y_xi(X_event, p_y_given_x) - self.log_p_y

def calculate_p_y(self, p_y_given_x):

"""Estimate log p(y_j) using a tiny bit of Laplace smoothing to avoid

infinities."""

pseudo_counts = 0.001 + np.sum(p_y_given_x, axis=1, keepdims=True)
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log_p_y = np.log(pseudo_counts) - np.log(np.sum(pseudo_counts, axis=2,

keepdims=True))

return log_p_y

def calculate_p_y_xi(self, X_event, p_y_given_x):

"""Estimate log p(y_j|x_i) using a tiny bit of Laplace smoothing to avoid

infinities."""

pseudo_counts = 0.001 + np.dot(X_event, p_y_given_x).transpose((1,0,2)) #

n_hidden, n_events, dim_hidden

log_marg = np.log(pseudo_counts) - np.log(np.sum(pseudo_counts, axis=2,

keepdims=True))

return log_marg # May be better to calc log p(x_i|y_j)/p(x_i), as we do in

Marg_Corex

def calculate_mis(self, log_p_y, log_marg):

"""Return normalized mutual information"""

vec = np.exp(log_marg + log_p_y) # p(y_j|x_i)

smis = np.sum(vec * log_marg, axis=2)

smis = smis.reshape((self.n_hidden, self.n_visible, self.dim_visible))

mis = np.sum(smis * self.p_x, axis=2, keepdims=True)

return mis/self.entropy_x.reshape((1, -1, 1))

def update_alpha(self, mis, tcs):

t = (self.tmin + self.ttc * np.abs(tcs)).reshape((self.n_hidden, 1, 1))

maxmis = np.max(mis, axis=0)

alphaopt = np.exp(t * (mis - maxmis))

self.alpha = (1. - self.lam) * self.alpha + self.lam * alphaopt

def calculate_latent(self, X_event):

""""Calculate the probability distribution for hidden factors for each

sample."""

alpha_rep = np.repeat(self.alpha, self.dim_visible, axis=1)

log_p_y_given_x_unnorm = (1. - self.balance) * self.log_p_y + np.transpose

(np.dot(X_event.T, alpha_rep*self.log_marg), (1, 0, 2))

return self.normalize_latent(log_p_y_given_x_unnorm)

def normalize_latent(self, log_p_y_given_x_unnorm):

"""Normalize the latent variable distribution

For each sample in the training set, we estimate a probability

distribution

over y_j, each hidden factor. Here we normalize it. (Eq. 7 in paper.)

This normalization factor is quite useful as described in upcoming work.

Parameters
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----------

Unnormalized distribution of hidden factors for each training sample.

Returns

-------

p_y_given_x : 3D array, shape (n_hidden, n_samples, dim_hidden)

p(y_j|x^l), the probability distribution over all hidden factors,

for data samples l = 1...n_samples

log_z : 2D array, shape (n_hidden, n_samples)

Point-wise estimate of total correlation explained by each Y_j for each

sample,

used to estimate overall total correlation.

"""

log_z = logsumexp(log_p_y_given_x_unnorm, axis=2) # Essential to maintain

precision.

log_z = log_z.reshape((self.n_hidden, -1, 1))

return np.exp(log_p_y_given_x_unnorm - log_z), log_z

def update_tc(self, log_z):

self.tcs = np.mean(log_z, axis=1).reshape(-1)

self.tc_history.append(np.sum(self.tcs))

def sort_and_output(self):

order = np.argsort(self.tcs)[::-1] # Order components from strongest TC to

weakest

self.tcs = self.tcs[order] # TC for each component

self.alpha = self.alpha[order] # Connections between X_i and Y_j

self.p_y_given_x = self.p_y_given_x[order] # Probabilistic labels for each

sample

self.log_marg = self.log_marg[order] # Parameters defining the

representation

self.log_p_y = self.log_p_y[order] # Parameters defining the

representation

self.log_z = self.log_z[order] # -log_z can be interpreted as "surprise"

for each sample

if hasattr(self, ’mis’):

self.mis = self.mis[order]

def print_verbose(self):

if self.verbose:

print self.tcs

if self.verbose > 1:

print self.alpha[:,:,0]
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if hasattr(self, "mis"):

print self.mis[:,:,0]

def convergence(self):

dist = -np.mean(self.tc_history[-10:-5]) + np.mean(self.tc_history[-5:])

return np.abs(dist) < self.eps # Check for convergence. dist is nan for

empty arrays, but that’s OK
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